Exam Statistical Reasoning

Date: Friday, November 11, 2016
Time: 09.00-12.00
Place: 5419.0013 (Landleven 12 (Kapteynborg))
Progress code: WISR-11

Rules to follow:

- This is a closed book exam. Consultation of books and notes is not permitted.
- Do not forget to write your name and student number on each paper sheet.
- There are 6 exercises and the number of points per exercise are indicated within boxes. You can reach 90 points. The exam grade g will be computed as follows: $g=\frac{10+p}{100}$, where p is the number of points you have reached.
- If you have to derive/show/compute something, then include the relevant equations and/or a short description so as to show how you obtained the result.
- We wish you success with the completion of the exam!

START OF EXAM

1. Posterior Distribution of Binomial-Beta Model. 15

Consider the random variables Y_{1}, \ldots, Y_{n} which are independently Binomial-distributed with an unknown probability parameter $\theta \in[0,1]$ and a known sample size N :

$$
Y_{1}, \ldots, Y_{n} \mid \theta \sim \operatorname{BIN}(N, \theta)
$$

The prior of θ is a Beta distribution with fix hyperparameters $a>0$ and $b>0$:

$$
\theta \sim \operatorname{BETA}(a, b)
$$

The realisations $Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}$ have been observed.

EXERCISE: Compute the posterior distribution of θ.

HINTS:

(1) Recall the pdf of a Binomial distribution with parameters $\theta \in[0,1]$ and $N \in \mathbb{N}$. For $x=0, \ldots, N$:

$$
p(x \mid \theta, N)=\binom{N}{x} \cdot \theta^{x} \cdot(1-\theta)^{N-x}
$$

(2) Recall the pdf of a Beta distribution with parameters $a>0$ and $b>0$. For $x \in[0,1]$:

$$
p(x \mid a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \cdot x^{a-1} \cdot(1-x)^{b-1}
$$

2. Marginal Likelihood of Poisson-Exponential Model. 15

Consider one single random variable Y whose distribution is a Poisson distribution with parameter $\theta>0$. Conditional on θ the density of Y is given by:

$$
p(y \mid \theta)=\frac{\theta^{y} \cdot e^{-\theta}}{y!}
$$

for all $y \in \mathbb{N}_{0}$.
Assume that the unknown parameter θ is exponentially distributed with a fix hyperparameter $\lambda>0$. The density of θ is then:

$$
p(\theta)=\lambda \cdot e^{-\lambda \theta}
$$

for all $\theta>0$.
EXERCISE: Show that the marginal distribution of Y has the density (pdf):

$$
p(y)=\left(\frac{1}{1+\lambda}\right)^{y} \cdot \frac{\lambda}{1+\lambda} \quad\left(y \in \mathbb{N}_{0}\right)
$$

HINTS:

(1) Recall the pdf of a Gamma distribution with parameters α and β. For $x \in \mathbb{R}^{+}$:

$$
p(x \mid \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \cdot x^{\alpha-1} \cdot e^{-\beta \cdot x}
$$

3. Predictive Distribution of Multinomial-Dirichlet Model. 15

Let the random vector $\left(N_{1}, \ldots, N_{K}\right)^{T}$ be multinomial distributed with parameters $\left(\theta_{1}, \ldots, \theta_{K}\right)$ and n so that the density (pdf) is given by:

$$
p\left(n_{1}, \ldots, n_{K} \mid \theta_{1}, \ldots, \theta_{K}\right)=\frac{n!}{n_{1}!\cdot \ldots \cdot n_{K}!} \cdot \prod_{k=1}^{K} \theta_{k}^{n_{k}}
$$

where $\theta_{k}>0$ for all $k, \theta_{1}+\ldots+\theta_{K}=1, n_{k} \in\{0, \ldots, n\}$ for all k and $n_{1}+\ldots+n_{K}=n$. Assume that the parameter vector $\left(\theta_{1}, \ldots, \theta_{K}\right)^{T}$ is Dirichlet distributed with pdf:

$$
p\left(\theta_{1}, \ldots, \theta_{K}\right)=\frac{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\alpha_{k}\right)} \cdot \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1}
$$

where $\alpha_{1}, \ldots, \alpha_{K}>0$ are fixed hyperparameters. In the lecture we have shown (Exercise 1 on Assignment no. 2) that the posterior distribution of $\left(\theta_{1}, \ldots, \theta_{K}\right)^{T}$, given the realisations $N_{1}=n_{1}, \ldots, N_{K}=n_{K}$, is a Dirichlet distribution with parameters $\left(n_{1}+\alpha_{1}, \ldots, n_{K}+\alpha_{K}\right)$.

EXERCISES:

(a) Just give the pdf $p\left(\theta_{1}, \ldots, \theta_{K} \mid n_{1}, \ldots, n_{K}\right)$ of the posterior distribution. 5
(b) Show that the predictive probability for a new realisation of the form

$$
\left(\tilde{n}_{1}, \ldots, \tilde{n}_{j-1}, \tilde{n}_{j}, \tilde{n}_{j+1}, \ldots, \tilde{n}_{K}\right)=(0, \ldots, 0,1,0 \ldots, 0)
$$

is given by:

$$
p\left(\tilde{n}_{1}, \ldots, \tilde{n}_{K} \mid n_{1}, \ldots, n_{K}\right)=\frac{\alpha_{j}+n_{j}}{\alpha+n}
$$

where $\alpha=\alpha_{1}+\ldots+\alpha_{K} .10$
4. Gibbs Sampling - Pseudo Code. 10

Consider a Bayesian model with three unknown parameters $\theta_{1} \in \Theta_{1}, \theta_{2} \in \Theta_{2}$ and $\theta_{3} \in \Theta_{3}$, and assume that the full conditional distributions can be computed in closed-form. Let $\operatorname{FCD}\left(\theta_{1} \mid \theta_{2}, \theta_{3}, \mathrm{D}\right), \operatorname{FCD}\left(\theta_{2} \mid \theta_{1}, \theta_{3}, \mathrm{D}\right)$ and $\operatorname{FCD}\left(\theta_{3} \mid \theta_{1}, \theta_{2}, \mathrm{D}\right)$ denote the full conditional distributions, where 'D' stands for the observed data.

EXERCISE: Give pseudo-code for an MCMC algorithm which generates a sample from the joint posterior distribution of θ_{1}, θ_{2} and θ_{3}.
HINT: Assume that there is neither need for a burn-in phase nor for thinning out.

5. Hierarchical Bayesian Model - Coupled Variances. 20

Consider a hierarchical Bayesian model where the data stem from two groups. There are the random variables $Y_{1}, \ldots, Y_{n_{1}}$ from group 1, and the random variables $Z_{1}, \ldots, Z_{n_{2}}$ from group 2. The observed data are the $n:=n_{1}+n_{2}$ realisations:

$$
Y_{1}=y_{1}, \ldots, Y_{n_{1}}=y_{n_{1}}, Z_{1}=z_{1}, \ldots, Z_{n_{2}}=z_{n_{2}}
$$

The variables within the first group are Gaussian distributed with a known mean μ and an unknown variance σ_{1}^{2} :

$$
Y_{1}, \ldots, Y_{n_{1}} \mid \sigma_{1}^{2} \sim \mathrm{~N}\left(\mu, \sigma_{1}^{2}\right)
$$

The variables within the second group are Gaussian distributed with the same known mean μ but with another unknown variance σ_{2}^{2} :

$$
Z_{1}, \ldots, Z_{n_{2}} \mid \sigma_{2}^{2} \sim \mathrm{~N}\left(\mu, \sigma_{2}^{2}\right)
$$

The variance parameters $\sigma_{i}^{2}(i=1,2)$ are both assumed to be Inverse-Gamma distributed with hyperparameters $a=1$ and $b>0$:

$$
\begin{aligned}
& \sigma_{1}^{-2} \sim \operatorname{GAM}(1, b) \\
& \sigma_{2}^{-2} \sim \operatorname{GAM}(1, b)
\end{aligned}
$$

Since the hyperparameter b is unknown, it obtains a Gamma distribution with hyperparameters $\alpha>0$ and $\beta>0$ as hyperprior:

$$
b \sim \operatorname{GAM}(\alpha, \beta)
$$

EXERCISE: Give a graphical model representation of this model and compute the three full conditional distributions. $5+5+5+5$

HINTS:

(1) Recall the pdf of a Gamma distribution with parameters α and β. For $x \in \mathbb{R}^{+}$:

$$
p(x \mid \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \cdot x^{\alpha-1} \cdot e^{-\beta \cdot x}
$$

(2) Recall the pdf of a Gaussian $\mathrm{N}\left(\mu, \sigma^{2}\right)$ distribution. For $x \in \mathbb{R}$:

$$
p\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{\sigma} \cdot \exp \left\{-0.5 \cdot \frac{(x-\mu)^{2}}{\sigma^{2}}\right\}
$$

6. Metropolis-Hastings Sampling and Monte Carlo Approximations. 15

Consider a hierarchical Bayesian model, where the sampling model consists of n variables Y_{1}, \ldots, Y_{n} whose joint distribution depends on a parameter $\theta_{1} \in \Theta_{1}$. Conditional on θ_{1} the variables Y_{1}, \ldots, Y_{n} are i.i.d. with the likelihood:

$$
p\left(y_{1}, \ldots, y_{n} \mid \theta_{1}\right)=\prod_{i=1}^{n} p\left(y_{i} \mid \theta_{1}\right)
$$

where y_{1}, \ldots, y_{n} are the observed realisations.

The prior distribution of θ_{1} depends on a hyperparameter $\theta_{2} \in \Theta_{2}$; the density of θ_{1} is thus of the form $p\left(\theta_{1} \mid \theta_{2}\right)$, and the hyperprior of the hyperparameter θ_{2} is a uniform distribution on Θ_{2}.

Assume that a Metropolis-Hastings MCMC sampling algorithm is used to generate a sample of the joint posterior distribution. The algorithm consists of two substeps:

- The first step proposes to move from θ_{1} to θ_{1}^{\star}, while θ_{2} is left unchanged. The proposal mechanism is such that the new parameter θ_{1}^{\star} is always sampled from the prior distribution. Hence, the proposal probability is

$$
Q\left(\left(\theta_{1}, \theta_{2}\right),\left(\theta_{1}^{\star}, \theta_{2}\right)\right)=p\left(\theta_{1}^{\star} \mid \theta_{2}\right)
$$

for all $\theta_{1}, \theta_{1}^{\star} \in \Theta_{1}$, and $\theta_{2} \in \Theta_{2}$.

- The second step proposes to move from θ_{2} to θ_{2}^{\star}, while θ_{1} is left unchanged. The proposal probability in this second step is always:

$$
Q\left(\left(\theta_{1}, \theta_{2}\right),\left(\theta_{1}, \theta_{2}^{\star}\right)\right)=0.2
$$

for all $\theta_{1} \in \Theta_{1}$ and $\theta_{2}, \theta_{2}^{\star} \in \Theta_{2}$.

For the exercises below assume further that:

$p\left(y_{1}, \ldots, y_{n} \mid \theta_{1}\right)=3, p\left(y_{1}, \ldots, y_{n} \mid \theta_{1}^{\star}\right)=2, p\left(\theta_{1} \mid \theta_{2}\right)=0.5$, and $p\left(\theta_{1} \mid \theta_{2}^{\star}\right)=0.4$.

EXERCISES:

(a) Compute the Metropolis-Hastings acceptance probability for the first sub-move from $\left(\theta_{1}, \theta_{2}\right)$ to $\left(\theta_{1}^{\star}, \theta_{2}\right) .5$
(b) Compute the Metropolis-Hastings acceptance probability for the second submove from $\left(\theta_{1}, \theta_{2}\right)$ to $\left(\theta_{1}, \theta_{2}^{\star}\right) .5$
(c) Assume that you have a posterior sample $\left(\theta_{1}^{(t)}, \theta_{2}^{(t)}\right)_{t=1, \ldots, T}$. Give an equation for a Monte Carlo approximation of the predictive probability $p\left(\tilde{y} \mid y_{1}, \ldots, y_{n}\right)$, i.e. for an approximation of the density of the predictive distribution at \tilde{y}. 5

