
Exam Statistical Reasoning
Date: Friday, November 11, 2016
Time: 09.00-12.00
Place: 5419.0013 (Landleven 12 (Kapteynborg))
Progress code: WISR-11

Rules to follow:

• This is a closed book exam. Consultation of books and notes is not permitted.

• Do not forget to write your name and student number on each paper sheet.

• There are 6 exercises and the number of points per exercise are indicated within
boxes. You can reach 90 points. The exam grade g will be computed as follows:
g = 10+p

100
, where p is the number of points you have reached.

• If you have to derive/show/compute something, then include the relevant equations
and/or a short description so as to show how you obtained the result.

• We wish you success with the completion of the exam!

START OF EXAM

1. Posterior Distribution of Binomial-Beta Model. 15
Consider the random variables Y1, . . . , Yn which are independently Binomial-distributed
with an unknown probability parameter θ ∈ [0, 1] and a known sample size N :

Y1, . . . , Yn|θ ∼ BIN(N, θ)

The prior of θ is a Beta distribution with fix hyperparameters a > 0 and b > 0:

θ ∼ BETA(a, b)

The realisations Y1 = y1, . . . , Yn = yn have been observed.

EXERCISE: Compute the posterior distribution of θ.

HINTS:
(1) Recall the pdf of a Binomial distribution with parameters θ ∈ [0, 1] and N ∈ N.
For x = 0, . . . , N :

p(x|θ,N) =

(
N

x

)
· θx · (1− θ)N−x

(2) Recall the pdf of a Beta distribution with parameters a > 0 and b > 0. For
x ∈ [0, 1]:

p(x|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
· xa−1 · (1− x)b−1
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2. Marginal Likelihood of Poisson-Exponential Model. 15
Consider one single random variable Y whose distribution is a Poisson distribution
with parameter θ > 0. Conditional on θ the density of Y is given by:

p(y|θ) =
θy · e−θ

y!

for all y ∈ N0.
Assume that the unknown parameter θ is exponentially distributed with a fix hy-
perparameter λ > 0. The density of θ is then:

p(θ) = λ · e−λθ

for all θ > 0.

EXERCISE: Show that the marginal distribution of Y has the density (pdf):

p(y) =

(
1

1 + λ

)y
· λ

1 + λ
(y ∈ N0)

HINTS:
(1) Recall the pdf of a Gamma distribution with parameters α and β. For x ∈ R+:

p(x|α, β) =
βα

Γ(α)
· xα−1 · e−β·x

3. Predictive Distribution of Multinomial-Dirichlet Model. 15

Let the random vector (N1, . . . , NK)T be multinomial distributed with parameters
(θ1, . . . , θK) and n so that the density (pdf) is given by:

p(n1, . . . , nK |θ1, . . . , θK) =
n!

n1! · . . . · nK !
·
K∏
k=1

θnk
k

where θk > 0 for all k, θ1+. . .+θK = 1, nk ∈ {0, . . . , n} for all k and n1+. . .+nK = n.
Assume that the parameter vector (θ1, . . . , θK)T is Dirichlet distributed with pdf:

p(θ1, ..., θK) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

·
K∏
k=1

θαk−1
k

where α1, . . . , αK > 0 are fixed hyperparameters. In the lecture we have shown (Ex-
ercise 1 on Assignment no. 2) that the posterior distribution of (θ1, . . . , θK)T , given
the realisations N1 = n1, . . . , NK = nK , is a Dirichlet distribution with parameters
(n1 + α1, . . . , nK + αK).

EXERCISES:

(a) Just give the pdf p(θ1, . . . , θK |n1, . . . , nK) of the posterior distribution. 5

(b) Show that the predictive probability for a new realisation of the form

(ñ1, . . . , ñj−1, ñj, ñj+1, . . . , ñK) = (0, . . . , 0, 1, 0 . . . , 0)

is given by:

p(ñ1, . . . , ñK |n1, . . . , nK) =
αj + nj
α + n

where α = α1 + . . .+ αK . 10
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4. Gibbs Sampling - Pseudo Code. 10
Consider a Bayesian model with three unknown parameters θ1 ∈ Θ1, θ2 ∈ Θ2 and
θ3 ∈ Θ3, and assume that the full conditional distributions can be computed in
closed-form. Let FCD(θ1|θ2, θ3,D), FCD(θ2|θ1, θ3,D) and FCD(θ3|θ1, θ2,D) denote
the full conditional distributions, where ’D’ stands for the observed data.

EXERCISE: Give pseudo-code for an MCMC algorithm which generates a sample
from the joint posterior distribution of θ1, θ2 and θ3.
HINT: Assume that there is neither need for a burn-in phase nor for thinning out.

5. Hierarchical Bayesian Model - Coupled Variances. 20
Consider a hierarchical Bayesian model where the data stem from two groups.
There are the random variables Y1, . . . , Yn1 from group 1, and the random variables
Z1, . . . , Zn2 from group 2. The observed data are the n := n1 + n2 realisations:

Y1 = y1, . . . , Yn1 = yn1 , Z1 = z1, . . . , Zn2 = zn2

The variables within the first group are Gaussian distributed with a known mean µ
and an unknown variance σ2

1:

Y1, . . . , Yn1|σ2
1 ∼ N(µ, σ2

1)

The variables within the second group are Gaussian distributed with the same known
mean µ but with another unknown variance σ2

2:

Z1, . . . , Zn2|σ2
2 ∼ N(µ, σ2

2)

The variance parameters σ2
i (i = 1, 2) are both assumed to be Inverse-Gamma

distributed with hyperparameters a = 1 and b > 0:

σ−2
1 ∼ GAM(1, b)

σ−2
2 ∼ GAM(1, b)

Since the hyperparameter b is unknown, it obtains a Gamma distribution with
hyperparameters α > 0 and β > 0 as hyperprior:

b ∼ GAM(α, β)

EXERCISE: Give a graphical model representation of this model and compute
the three full conditional distributions. 5+5+5+5

HINTS:
(1) Recall the pdf of a Gamma distribution with parameters α and β. For x ∈ R+:

p(x|α, β) =
βα

Γ(α)
· xα−1 · e−β·x

(2) Recall the pdf of a Gaussian N(µ, σ2) distribution. For x ∈ R:

p(x|µ, σ2) =
1√
2π
· 1

σ
· exp{−0.5 · (x− µ)2

σ2
}
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6. Metropolis-Hastings Sampling and Monte Carlo Approximations. 15
Consider a hierarchical Bayesian model, where the sampling model consists of n
variables Y1, . . . , Yn whose joint distribution depends on a parameter θ1 ∈ Θ1. Con-
ditional on θ1 the variables Y1, . . . , Yn are i.i.d. with the likelihood:

p(y1, . . . , yn|θ1) =
n∏
i=1

p(yi|θ1)

where y1, . . . , yn are the observed realisations.

The prior distribution of θ1 depends on a hyperparameter θ2 ∈ Θ2; the density of
θ1 is thus of the form p(θ1|θ2), and the hyperprior of the hyperparameter θ2 is a
uniform distribution on Θ2.

Assume that a Metropolis-Hastings MCMC sampling algorithm is used to generate
a sample of the joint posterior distribution. The algorithm consists of two substeps:

• The first step proposes to move from θ1 to θ?1, while θ2 is left unchanged. The
proposal mechanism is such that the new parameter θ?1 is always sampled from
the prior distribution. Hence, the proposal probability is

Q((θ1, θ2), (θ
?
1, θ2)) = p(θ?1|θ2)

for all θ1,θ
?
1 ∈ Θ1, and θ2 ∈ Θ2.

• The second step proposes to move from θ2 to θ?2, while θ1 is left unchanged.
The proposal probability in this second step is always:

Q((θ1, θ2), (θ1, θ
?
2)) = 0.2

for all θ1 ∈ Θ1 and θ2, θ
?
2 ∈ Θ2.

For the exercises below assume further that:
p(y1, . . . , yn|θ1) = 3, p(y1, . . . , yn|θ?1) = 2, p(θ1|θ2) = 0.5, and p(θ1|θ?2) = 0.4.

EXERCISES:

(a) Compute the Metropolis-Hastings acceptance probability for the first sub-move
from (θ1, θ2) to (θ?1, θ2). 5

(b) Compute the Metropolis-Hastings acceptance probability for the second sub-
move from (θ1, θ2) to (θ1, θ

?
2). 5

(c) Assume that you have a posterior sample (θ
(t)
1 , θ

(t)
2 )t=1,...,T . Give an equation

for a Monte Carlo approximation of the predictive probability p(ỹ|y1, . . . , yn),
i.e. for an approximation of the density of the predictive distribution at ỹ. 5

END OF EXAM
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